Comparative Genome Assembly

-- and --

Lessons learned while building the first comparative genome assembler, AMOScmp

Adam M Phillippy Center for Bioinformatics and Computational Biology

WGS sequencing

WGS assembly

• Overlap reads

- identify reads with shared k-mers
- calculate edit distance
- Layout reads
 - walk the overlap graph
 - hierarchically build contigs
- Generate consensus
 - multi-align read layouts

Limitations of WGS

• Algorithmically hard

– Overlap reads

- 70,000 choose 2 = 2.5 billion combinations
 - hard for large eukaryotic genomes
- Layout reads
 - interpret the overlap graph
 - hard for low coverage projects (too few edges)
 - hard for repetitive projects (too many edges)

AMOScmp overview

• Pick a reference sequence

• assembly template

• Align target reads to the reference

- 2.5 billion \rightarrow 70,000 combinations
- Infer read relationships from alignments
 - if their mappings overlap, they must overlap
- Create read layout
 - fine tune the mappings
- Build a consensus

Picking a reference

- The closer the better
 - sequence similarity
 - high identity
 - structural similarity
 - similar repeat distributions
 - few rearrangements
- Preferably complete
 - non-contiguous reference
 - fragmented results
 - forced alignments
 - singletons

Mapping the reads

Generate read to reference alignments

using MUMmer (nucmer)

Pick the correct alignments

using modified LIS algorithm
allow fragmented mappings
allow multiple, equivalent mappings

Select repeat copies

use mate information
"randomly" place leftovers

Read alignments

Longest Increasing Subsequence

Problem

For a list of *n* integers, find the longest strictly increasing subsequence from left to right

-5 0 3 5 1 2 4 8 4 9

Complexity

- $-O(n \log n)$ via greedy set cover
- $-O(n^2)$ via dynamic programming
 - O(l) for n < l / log l

LIS for alignments

• Alignments are not integers

- $S_i = S_j + (len_i * idy_i) max(olapR_{ij}, olapQ_{ij})$
 - reward greater length and identity
 - force mutually consistent ordering
 - penalize overlap

LIS with repeats

• Problem

For a list of *n* integers, find a set of disjoint subsequences within a given length of the LIS
1 5 2 6 3 7 4 8 5 9

Repeat selection

Making the layout

- Locate all alignment breaks
- For each break, count yay and nay reads
 - scan across the reference from left to right
 - read heap contains all the spanning reads
 - count supporting, discounting, fuzzy
 - keep the majority and toss the minority OR toss everything
- Adjust for polymorphism
 - reads inside an insertion need to be handled separately
 - reads after an insertion need to be offset accordingly
- Worst case $O(cr \log r)$

Alignment breaks

Insertions

Rearrangement

Validating conflicts

Handling inserts

Example results

Target

Streptococcus agalactiae 2603 V/R

Reference

Streptococcus agalactiae NEM316
Streptococcus agalactiae 2603 V/R

2603 read placement

• NEM 316 reference

- 29,456 alignments
 - ~23,000 after LIS
- 26,099 total reads
 - 21,816 unique
 - 148 unique mate
 - 22 mate constraints
 - 443 random
 - 3670 unplaced

- Self reference
 - 34,846 alignments
 - ~26,000 after LIS
 - 26,099 total reads
 - 25,301 unique
 - 314 unique mate
 - 22 mate constraints
 - 442 random
 - 20 unplaced

2603 read layout

NEM 316 reference

- 312 conflicts
 - 34 accepted
 - 185 rejected
 - 93 unknown
- 155 contigs

Self reference

- 138 conflicts
 - 0 accepted
 - 133 rejected
 - 5 unknown
- 86 contigs

2603 assembly

ſ		vs 2603			``	vs. NEM 316	6	CelAsm		
			total			total			total	
	Х	N	contig size	N50	N	contig size	N50	N	contig size	N50
	1	604	1,001,743	0	527	839,315	0	585	903,184	0
	2	619	1,593,364	2,294	586	1,393,287	1,479	657	1,488,287	1,595
	3	443	1,856,394	5,707	450	1,640,231	4,179	506	1,812,266	4,981
	5	243	2,043,842	14,915	277	1,829,976	10,395	293	2,046,730	12,458
	7	144	2,100,541	27,364	198	1,891,527	18,142	189	2,110,396	21,926
	9	86	2,119,579	42,679	155	1,919,237	24,239	130	2,132,490	33,953

	vs 2603			vs NEM 316			CelAsm			LW
Х	gaps	gap size	coverage	gaps	gap size	coverage	gaps	gap size	coverage	coverage
1	588	1,168,208	45.92	511	1,329,996	38.43	562	1,261,419	41.61	39.31
2	596	577,987	73.24	552	778,491	63.96	601	679,386	68.55	74.10
3	430	301,899	86.02	415	530,417	75.45	455	365,736	83.07	89.88
5	232	119,917	94.45	240	347,697	83.90	257	153,824	92.88	98.56
7	132	62,410	97.11	155	292,068	86.48	146	81,406	96.23	99.79
9	80	43,408	97.99	110	270,210	87.49	97	61,544	97.15	99.97
TIG8										
J J REMOTE FOR REAL										

Benefits

Low coverage projects

- very thin overlaps permissible
 - larger contigs
 - higher assembly confidence
- High coverage projects
 - algorithmically simplified
 - fewer misassemblies
 - given a good reference and implementation
 - greatly reduced time and memory requirements
 - under 5 min / 100 MB for a 5 Mbp genome
 - more reads included in the assembly

Applications

Low coverage projects

- thin overlaps make for bigger contigs
- allow for earlier SNP detection

• Environmental sequencing

• hybrid assembly of multiple strains

• Short read sequencing

- traditional algorithms fail for short reads
 - overlaps too short, coverage too deep, non-uniform coverage

Assembly validation

JINGR I Jacobia and and

- self reference alignment breaks
 - tandem collapse
 - polymorphism

Open questions

- Hybrid assembly
 - conventional / comparative
 - who comes first?
- Read mapping
 - repeats increase runtime
 - sensitivity / specificity
 - exact matches only

Layout

- missing sequence
 - inexact repeat copies
 - identity cutoff
 - surrogates

- polymorphisms
 - query insertions
 - assembly separately
 - bambus
 - rearrangements / tandems
 - examine location

Mihai Pop, Adam Phillippy, Arthur L. Delcher, Steven L. Salzberg. "Comparative genome assembly." Briefings in Bioinformatics. 2004 Sep; 5(3):237-48.

Mihai Pop Arthur Delcher Steven Salzberg Stefan Kurtz NIH Michael Schatz Pawel Gajer

